Skip navigation
All Places > Keysight Blogs > Keysight Russia > Blog > 2017 > January
2017

Сейчас осциллографы реального времени часто обозначают DSO или MSO (цифровые запоминающие осциллографы или осциллографы смешанного сигнала). Большинство продаваемых сегодня осциллографов являются осциллографами реального времени. Полоса пропускания осциллографов реального времени составляет от нескольких МГц до десятков ГГц при стоимости прибора от нескольких сотен до нескольких сотен тысяч долларов. Стробоскопические осциллографы, как правило, имеют обозначение DCA (цифровые коммуникационные анализаторы). Их полоса пропускания обычно превышает десятки ГГц, и применяются они в первую очередь для анализа высокоскоростных последовательных шин, оптических устройств и сигналов тактовой частоты. Тем не менее, с ростом полосы используемых сигналов, сферы применения стробоскопических осциллографов и осциллографов реального времени начали пересекаться.

 

Тракт дискретизации в обоих типах осциллографов практически одинаков. Входной сигнал проходит через цепь предварительной обработки входного интерфейса, дискретизируется, сохраняется в памяти, а затем отображается на экране. Тем не менее, используемые в них технологии в корне отличаются.

 

Осциллографы реального времени

Как работает осциллограф реального времени? Осциллограф реального времени содержит специализированную ИС управления запуском, которая позволяет указать интересующие события, такие как пороговый уровень перепада напряжения, нарушение условий установки и удержания или появление определенной кодовой последовательности. В обычном режиме регистрации, когда система запуска обнаруживает указанное событие, осциллограф захватывает и сохраняет непрерывную последовательность выборок сигнала до и после события запуска и выводит на экран захваченные данные. Осциллографы реального времени могут работать в режиме однократного или периодического запуска. В режиме однократного запуска осциллограф захватывает и отображает одну порцию последовательных выборок, определяемую доступным объемом памяти и выбранной частотой дискретизации. После однократного захвата осциллограммы пользователь может просматривать ее в режиме прокрутки и растягивать любой фрагмент с интересующим его событием. В непрерывном режиме осциллограф периодически захватывает и отображает сигнал при каждом появлении заданных условий запуска. Переменное или бесконечное послесвечение позволяет накладывать последовательные захваты сигнала друг на друга. Периодический режим используется чаще, поскольку он дает живое представление об исследуемом сигнале. Измерения таких параметров, как длительность фронта или импульса, математический анализ или быстрое преобразование Фурье (БПФ) могут выполняться и в однократном режиме, и в течение некоторого времени в периодическом режиме. Большинство осциллографов реального времени с полосой пропускания до 6 ГГц имеет два входа – 1 МОм и 50 Ом, к которым подключаются различные пробники и кабели.

 

Осциллографы реального времени характеризуются тремя ключевыми параметрами – полосой пропускания, частотой дискретизации и глубиной памяти. Конечно, существуют и другие важные параметры, которые надо учитывать при выборе осциллографа реального времени.

 

Осциллограф с большой глубиной памяти имеет три явных преимущества:

  1. Большая глубина памяти позволяет захватывать сигнал в большем временном окне при той же частоте дискретизации. Глубина памяти определяет, сколько выборок можно сохранить за один захват и, следовательно, определяет длительность захвата. Чем больше выборок можно сохранить за один захват, тем больше вероятность обнаружения редко происходящих событий.
  2. Большая глубина памяти позволяет использовать большую частоту дискретизации при меньших скоростях развертки, что повышает точность измерения. Например, при глубине памяти 10 млн. выборок, частоте дискретизации 10 Гвыб/с и скорости развертки 1 мкс/дел будет отображаться 1 млрд. точек данных (это абсолютный предел для большинства современных осциллографов). Если переключить развертку на 10 мкс/дел, осциллограф снизит частоту дискретизации в 10 раз, чтобы захватить тот же временной интервал. Однако осциллограф с глубиной памяти 100 млн. выборок сохранит ту же частоту дискретизации 10 Гвыб/с, захватывая при этом интервал длительностью 20 мкс.
  3. Большая глубина памяти повышает точность статистических измерений и математических расчетов. Исследование большого числа фронтов, быстрое преобразование Фурье и измерения джиттера выигрывают от большой глубины памяти захвата.

 

Стробоскопические осциллографы

Как работает стробоскопический осциллограф? Стробоскопические осциллографы предназначены исключительно для захвата, отображения и анализа периодически повторяющихся сигналов. Система запуска таких осциллографов тоже ориентирована на работу с периодическими сигналами. При первом появлении условий запуска стробоскопический осциллограф захватывает группу разнесенных во времени выборок. Затем осциллограф сдвигает точку запуска, захватывает следующую группу выборок и выводит их на экран вместе с первой группой. Он повторяет этот процесс, создавая осциллограмму в режиме с бесконечным послесвечением, используя данные многих последовательных захватов. Ключевым компонентом этой технологии является интерполяция запуска, которая контролирует интервалы времени между запусками для повышения точности измерений. Глубина памяти при этом не критична, поскольку используется только для захвата и обработки нескольких выборок при каждом запуске. Частота дискретизации тоже не важна. Определяющую роль играет точность задержки от первого запуска до следующего.

 

Сравнение стробоскопических осциллографов с осциллографами реального времени

Как уже говорилось, полоса пропускания современных осциллографов реального времени может превышать 60 ГГц, тогда как полоса стробоскопических осциллографов может достигать значения 90 ГГц и выше. В результате для большинства цифровых приложений полоса пропускания уже не является однозначным критерием выбора осциллографа. С другой стороны, важным параметром является цена. Полнофункциональные стробоскопические осциллографы с полосой пропускания 50 ГГц будут стоить менее 150 000 долларов, тогда как цена осциллографа реального времени с такой же полосой приближается к 400 000 долларов. Разработчик должен решить, стоит ли повышенная гибкость осциллографа реального времени таких денег.

 

Шум и отношение сигнал/шум

Существуют и более существенные различия между стробоскопическими осциллографами и осциллографами реального времени. Стробоскопический осциллограф имеет 14-разрядный АЦП и в результате обладает очень большим динамическим диапазоном, что позволяет рассматривать сигналы амплитудой от нескольких милливольт до единиц вольт без применения аттенюаторов. В результате стробоскопический осциллограф имеет очень малый уровень шума при разных значениях входной чувствительности. Динамический диапазон осциллографа реального времени ограничен 8 разрядами, но эффективное разрешение зачастую равно примерно 6 разрядам. В связи с ограниченным отношением сигнал/шум необходимо применять аттенюаторы для корректного отображения сигналов в диапазоне от нескольких милливольт до нескольких вольт. В конечном итоге это значит, что осциллографы реального времени обладают большим уровнем шумов, чем стробоскопические осциллографы. Благодаря малым шумам, стробоскопические осциллографы принято считать “золотым эталоном” измерений. Тем не менее, осциллографы реального времени постоянно улучшаются, и разрыв в качестве сигнала со стробоскопическими осциллографами постоянно сокращается.

 

Амплитудно-частотная характеристика

Еще одним параметром, который надо учитывать при выборе между осциллографом реального времени и стробоскопическим осциллографом, является их амплитудно-частотная характеристика. Обычно стробоскопический осциллограф не использует цифровую коррекцию (с применением цифрового сигнального процессора) и поэтому обладает медленно спадающей частотной характеристикой, определяемой используемым оборудованием и близкой по форме к гауссовой кривой. Осциллографы реального времени могут использовать ЦСП и тем самым корректировать амплитудно-частотную характеристику. Например, осциллографы Agilent DSOX93304Q обладают равномерной АЧХ во всей полосе пропускания, то есть их коэффициент усиления меняется не более чем на 1 дБ во всем частотном диапазоне осциллографа.

 

Частотные характеристики осциллографов реального времени могут варьироваться. Некоторые производители осциллографов предлагают до пяти частотных характеристик с разными параметрами. Непосредственное сравнение плоской и гауссовой АЧХ может показать, что результаты одного и того же измерения будут выглядеть совершенно по-разному. Например, гауссова АЧХ может повлиять на результаты измерения и добавить межсимвольные помехи. Плоская АЧХ с крутым спадом может порождать нечто вроде звона, если скорость нарастания и спада сигнала настолько высока, что не укладывается в полосу пропускания осциллографа. В любом случае нужно знать, как оборудование может влиять на результаты измерений.


Разные способы восстановления тактовой частоты

Ключевой процедурой осциллографических измерений является восстановление тактовой частоты. Восстановление тактовой частоты позволяет строить глазковую диаграмму реального времени, выполнять тестирование по маске и выделять джиттер. В сущности, восстановленная тактовая частота представляет собой опорную тактовую частоту, используемую для сравнения измерений. До недавнего времени стробоскопические осциллографы выполняли только аппаратное восстановление тактовой частоты. В результате независимо от того, использовалась ли внешняя тактовая частота или внутренняя тактовая частота 10 МГц самого стробоскопического осциллографа, система восстановления была подвержена ошибкам. Сейчас эта проблема устранена, поскольку стробоскопические осциллографы Agilent используют программную систему восстановления тактовой частоты, которая идеально справляется с этой задачей. Осциллографы реального времени почти всегда использовали программное восстановление тактовой частоты, однако они имели и дополнительную возможность использования внешней тактовой частоты. В этом случае также преимущество программного восстановления тактовой частоты заключается в том, что оно не подвержено аппаратным ошибкам, но оно сдает свои позиции, когда тактовая частота не должна зависеть от скорости передачи данных.

 

Кроме разницы между аппаратным и программным восстановлением тактовой частоты нужно учитывать и алгоритм восстановления. Обычно стробоскопические осциллографы используют передаточную функцию джиттера (JTF) (рис. 1), тогда как осциллографы реального времени используют функцию OJTF (рис.2). OJTF в большей степени подавляет низкочастотный джиттер, чем JTF. В результате вы увидите значительно меньше низкочастотных составляющих джиттера на осциллографе реального времени, чем на стробоскопическом осциллографе. Эти значения можно уравнять, просто переключив оба осциллографа на одну передаточную функцию. Это стало возможным благодаря недавним достижениям в развитии стробоскопических осциллографов, и значительно облегчает сравнение джиттера.


Когда использовать стробоскопический осциллограф, и когда осциллограф реального времени

Исторически сложилось так, что стробоскопические осциллографы на порядок превосходят осциллографы реального времени по полосе пропускания и собственному джиттеру. Однако в последнее десятилетие осциллографы реального времени существенно сократили этот разрыв, предложив пользователям, занимающимся тестированием трансиверов, выбор между осциллографами реального времени и стробоскопическими осциллографами. Стробоскопические осциллографы по-прежнему обладают меньшим джиттером и значительно более широким динамическим диапазоном, что делает их идеальными для измерения характеристик в определенных условиях. Если ваш сигнал периодически повторяется и может захватываться в реальном временном интервале, стробоскопический осциллограф даст верное представление такого сигнала.

 

Осциллографы реального времени привлекают своей гибкостью. Если пользователь занят отладкой и хочет настроить запуск по трудно обнаруживаемым событиям, ему идеально подойдет осциллограф реального времени. Пользователям осциллографов реального времени доступно множество приложений для тестирования на соответствие стандартам, декодирования сигналов различных протоколов, запуска по этим сигналам и анализа. Кроме того, осциллографы реального времени могут измерять джиттер по одному захвату, что облегчает анализ причин неисправностей. Многие методы измерений, рекомендуемые в стандартах, используют для тестирования приемников осциллографы реального времени. Это значит, что пользователь должен использовать осциллограф реального времени, чтобы гарантировать соответствие своих устройств требованиям стандарта.

 

Рис. 1. Стробоскопические осциллографы, как и осциллографы реального времени, могут строить глазковые диаграммы, гистограммы и измерять джиттер. Благодаря широкой полосе пропускания, модульной конструкции и небольшой стоимости, стробоскопические осциллографы обычно лучше отвечают требованиям производственного тестирования, чем осциллографы реального времени.

 

Рис. 2. Современные осциллографы реального времени имеют полосу пропускания до 63 ГГц и могут выполнять расширенный анализ джиттера, стирая грань между осциллографами реального времени и стробоскопическими осциллографами в научных исследованиях и разработке.

 


Заключение

Осциллографы реального времени идеально отвечают требованиям большинства приложений. Эти осциллографы выпускаются с разными значениями полосы пропускания, позволяют захватывать однократные и периодически повторяющиеся сигналы и все чаще применяются для выполнении высокочастотных измерений, таких как измерения джиттера и параметров передатчиков. Если ваше приложение использует периодически повторяющиеся сигналы, характеризующиеся малым джиттером и широким динамическим диапазоном, то хорошим выбором может оказаться стробоскопический осциллограф. Кроме того, стробоскопические осциллографы обладают меньшей начальной стоимостью и поддерживают модульное обновление, что делает их пригодными для производственного тестирования электрических и оптических параметров. Если вы работаете с частотами выше 20 ГГц и не знаете, какой тип осциллографа выбрать, обратитесь к производителю осциллографов, который выпускает и стробоскопические осциллографы, и осциллографы реального времени. Такой производитель больше заинтересован в том, чтобы выбранный вами осциллограф точно соответствовал вашим потребностям, чем производитель, впускающий только осциллографы реального времени, или предлагающий ограниченный выбор стробоскопических осциллографов.