VitalyMorarenko

Детектирование комплексно модулированных оптических сигналов (DP-QPSK, N-QAM и т.д.)

Blog Post created by VitalyMorarenko Employee on Sep 19, 2016

Потребность в широкополосных услугах связи растет в геометрической прогрессии. Когерентная обработка оптического сигнала и использование современных форматов цифровой модуляции позволяют существенно повысить пропускную способность сетей с 10 Гбит/с и 40 Гбит/с до 100 Гбит/с и еще более высоких значений. Так, например, уже созданы оптические супер-каналы как совокупность небольших более мелких оптических каналов, обеспечивающих пропускную способность 400 Гбит/с и выше. Вопрос измерительной техники для исследования когерентных оптических сетей приобретает все большую актуальность.


Детектирование оптических сигналов с амплитудной модуляцией

В отличие от предыдущего поколения высокоскоростных оптических сетей, когда использование амплитудной манипуляции для модуляции амплитуды оптической несущей на высоких скоростях передачи данных было достаточно, современные оптические каналы связи, следуя за индустрией беспроводной связи, переходят к использованию форматов модуляции более высокого порядка (рис. 1).

 


Рис. 1. Развитие пропускной способности волоконно-оптических систем связи

 

Сложные форматы модуляции выходят за рамки амплитудной манипуляции посредством кодирования информационных символов как по амплитуде, так и по фазе. В системах с амплитудной модуляцией (OOK - on/off keying) мы можем детектировать сигнал с помощью фотодиода, который преобразует оптическую мощность в электрический ток Iphoto. Возникающий в фотодиоде фототок Iphoto прямо пропорционален произведению величины оптического сигнала S на комплексно-сопряженное с ним значение S*.

 


Рис. 2. Непосредственное детектирование: фототок Iphoto содержит информацию только об амплитуде оптического сигнала


Из уравнения на рис. 2 следует, что результат содержит только амплитуду As. Ток Iphoto не несет никакой информации о круговой частоте ws и фазе Φs. Таким образом, показанный сигнал с квадратурной фазовой манипуляцией (QPSK) во временной области нельзя однозначно сопоставить с диаграммой IQ. Можно лишь сказать, что нижняя, пересекающая нуль кривая, представляет диагональные переходы между четырьмя точками созвездия, а средняя кривая – внешние переходы. Плоский сигнал соответствует случаям, когда фаза не меняется, то есть когда за символом следует такой же символ.

 

Для однозначного определения переходов между символами нужно использовать более сложные методы, обеспечивающие полное детектирование всех электрических характеристик сигнала, включая информацию о фазе. Дополнительно усложняет проблему тот факт, что в современных оптических коммуникационных системах используются длины волн, близкие к инфракрасному диапазону, например, 1550 нм, что соответствует частоте около 200 ТГц. Таким образом, скорость изменения электрического поля во времени и пространстве на несколько порядков выше скорости работы имеющихся электронных устройств, работающих в мега- и гигагерцовом диапазоне.


Когерентное детектирование оптических сигналов

Ключ к решению этой проблемы - измерение не абсолютной фазы, а фазы по отношению к известному опорному сигналу. Базовая схема такого детектора, называемого когерентным, показана на рис. 3. Смешение полезного сигнала S с опорным сигналом R позволяет измерять разность фаз. На диаграммах показан сигнал с модуляцией QPSK, смешанный с разными опорными сигналами. «Идеальный» монохроматический лазер, создающий опорный сигнал R, часто называют «гетеродином» по аналогии с радиоэлектроникой.

 


Рис. 3. Смешение полезного сигнала S с опорным сигналом R


Конечно, технология когерентного детектирования не нова, она использовалась в сфере радиовещания десятилетия назад. Благодаря ей приемник можно было настроить на прием определенной радиостанции, распознав ее среди сотен различных сигналов, передаваемых по радиоволнам. Но идея использовать когерентное детектирование для практического применения в сфере оптической передачи данных была реализована сравнительно недавно.

 

Притом что нет «стандартного» определения когерентного детектирования в сетях, например, DWDM, существуют определенные рыночные ожидания относительно номинальных признаков, характерных для развертывания решения с применением когерентных технологий: амплитудная/фазовая модуляция высокого порядка, поляризационное мультиплексирование, когерентное детектирование посредством лазера гетеродина в приемнике, высокоскоростные аналогово-цифровые преобразователи и сложные цифровые сигнальные процессоры в приемнике. Кроме наличия перечисленных ключевых признаков, когерентные технологии демонстрируют потенциал дальнейшего развития, поэтому в следующих поколениях этой технологии мы, возможно, увидим функции активного формирования сигнала в передатчике (с использованием аналого-цифрового преобразователя) и компенсацию нелинейных эффектов в оптоволокне.

 

Итак, полезный сигнал S и опорный сигнал R подаются на оптический сумматор и детектируются фотодиодом. В результате ток IPhoto будет пропорционален произведению суммы двух сигналов R+S и комплексно-сопряженной с ней величины R+S*.

 

Уравнение на рис. 3 показывает, что результат содержит разность фаз ΔΦ= ΦS-ΦR и разность частот Δω =ωS-ωR. Из значения ΔΦ мы можем получить зависимость ΦS от времени. Опорная частота ωR выбирается близкой к частоте ωS, в результате Δω теперь получается достаточно малой для электронной обработки. Фазозависимый член формулы называется гетеродинной составляющей или биением, поскольку получается в результате наложения или «биения» двух сигналов с близкими круговыми частотами.

 

Также в формуле имеется член, содержащий квадрат амплитуды, который не оказывает влияния на результат, если модулируется только фаза, а амплитуда остается неизменной, что и происходит в модуляции QPSK. Как показано на рис. 3, смешение полезного сигнала S с опорным сигналом R позволяет измерять разность фаз. На диаграммах показан сигнал с QPSK, смешанный с разными опорными сигналами. Подавить все другие фазонезависимые составляющие возможно с помощью балансного приемника. В этом случае детектируемый сигнал S и опорный сигнал R суммируются в одной ветви и вычитаются в другой ветви оптического сумматора 2x2 (в качестве которого может использоваться сумматор волоконно-оптической или атмосферной оптической линии). Каждый из результирующих сигналов детектируется своим фотодиодом. В результате получается разность между двумя фототоками.


IQ-демодуляция и когерентное детектирование

Чтобы восстановить информацию о фазе и амплитуде, когерентный приемник должен выдавать на двух отдельных выходах синфазную (I) и квадратурную (Q) составляющие. Для этого нам понадобится второй балансный детектор. Один гетеродин дает опорный сигнал для двух детекторов, но для получения составляющей Q нужно сдвинуть фазу на π/2. Блок-схема демодулятора для поляризационно-мультиплексированного сигнала приведена на рис. 4. В этом случае для получения координат I и Q используются четыре выходных сигнала, по одному на каждое направление поляризации по отношению к поляризации опорного сигнала приемника. Такая архитектура с разделением поляризации гарантирует смешение всех сигналов с сигналом гетеродина независимо от поляризации на входе. Поэтому эта схема используется очень широко и даже для сигналов, не имеющих двойной поляризации.

 


Рис. 4. IQ-демодулятор с разделением поляризации на две составляющие


Вопрос измерительной техники для исследования когерентных оптических систем передачи данных стоит на сегодняшний день очень остро, особенно при решении таких задач, как определение параметров целостности сигналов передатчиков, определение параметров гомодинных компонентов, оценка параметров компонентов сети. Принцип детектирования комплексно модулированных оптических сигналов с двойной поляризацией, иллюстрированный рис. 4, замечательно подходит для контрольно-измерительной техники, поскольку методы гетеродинного детектирования во временной области предлагают максимальную гибкость, и в отличие от детектирования в частотной области их можно использовать для детектирования в реальном масштабе времени. Следовательно, они более пригодны для «живых» сигналов в сетях передачи данных. Дискретизация в эквивалентном масштабе времени (стробоскопический метод) работает только для периодически повторяющихся сигналов ограниченной длины, например, в контрольно-измерительных сценариях.

Дискретизация в реальном масштабе времени позволяет полностью восстановить сигнал во всех областях без ограничений по формату модуляции. В методах гетеродинного детектирования во временной области отсутствуют также и ограничения на длину сигнала. В ходе обработки сигнала можно компенсировать поляризационно-модовую (PMD) и хроматическую дисперсию (CD). В этом случае пропускная способность ограничивается только обработкой сигнала. В то же время нужно помнить, что этот метод требует применения быстрого четырехканального оборудования, такого как высокопроизводительный дигитайзер реального времени с очень малыми уровнями джиттера и шума и высоким эффективным числом разрядов (ENOB) во всем частотном диапазоне.

 

В следующей статье по теме мы рассмотрим все нюансы, связанные с разработкой когерентных оптических приёмников, и постараемся дать исчерпывающий ответ на все вопросы, касающиеся этих компонентов оптических сетей, использующих когерентные передачу и прием. 

Outcomes