New InfiniiVision Firmware Release - Version 7.10

Blog Post created by JohnnieHancock Employee on May 3, 2017

Keysight continues to invest in the very popular InfiniiVision X-Series oscilloscopes with new oscilloscope models, new options, and customer-requested enhancements. Every 6 to 8 months, Keysight releases new firmware that our customers can download into their InfiniiVision scopes at no cost. The latest release of firmware (version 7.10) for the InfiniiVision 3000T, 4000, and 6000 X-Series oscilloscopes includes three new licensed “pay for” options as well as several FREE upgrades/enhancements including the following:


  • User-definable Manchester/NRZ Trigger & Decode Option
  • Frequency Response Analyzer (FRA) Option
  • CXPI Trigger & Decode Option (new on 6000X, existing on 3000T & 4000)
  • DVM/Counter Option – Now standard!
  • Education Training Kit Option – Now standard!
  • On-screen grid scaling factors – Standard!
  • FFT RF power measurements -Standard!



User-definable Manchester/NRZ Trigger & Decode Option (DSOXT3NRZ, DSOX4NRZ, & DSOX6NRZ)


Keysight’s InfiniiVision X-Series oscilloscopes support triggering on and decoding a broad range of today’s most popular serial bus protocols including I2C, SPI, UART, CAN, USB, etc.  But what happens if you are working with one of the less popular — or perhaps proprietary — serial bus protocols that isn’t supported? Available now on InfiniiVision 3000T, 4000, and 6000 X-Series oscilloscopes is a “user-definable” Manchester- & NRZ-encoded serial bus option. This new trigger and decode option allows you to define the specifics parameters and structure of your particular serial bus including:


  • Encoding type (Manchester or NRZ)
  • Baud Rate
  • Start edge
  • # of Synchronization bits
  • Word size
  • Header field size
  • Data field size
  • Trailer field size
  • Decode Base (binary, hex, ASCII, or unsigned decimal)

Also available are three new application notes that provide step-by-step instructions on how to set up triggering and decoding for three specific Manchester-encoded serial bus measurement applications including the automotive PSI5 sensor bus, automotive RF-modulated key fob signals, and NFC-F signals. Figure 1 show an example of triggering on and decoding the automotive PSI5 sensor bus, which is often used in airbag systems.


Figure 1: Triggering on decoding the Manchester-encode PSI5 sensor bus using Keysight’s user-definable serial bus option.


In the above PSI5 measurement example, after detecting the 2-bit Start field, the scope triggered on and decoded a 10-bit payload field followed by a parity bit. The scope also automatically detected a Manchester timing error in the frame that immediately followed the trigger frame (155h). To learn more about triggering on and decoding the PSI5 serial bus, download the new application note on this topic.


Figure 2 above shows an example of decoding automotive key fob signals.


Decoding RF-modulated key fob signals requires hardware digital demodulation. The new application note on this topic shows you how to capture the RF signal with a “sniffer” probe, how to demodulate the captured signal in hardware, and then how to decode each “code-hopping” RF burst. To learn more about how to set up the scope to demodulate and then decode RF-modulated key fob signals, download the new application note on this topic.

Figure 3 above shows an example of decoding NFC-F signals.


With NFC-F signals, the scope automatically demodulates the captured RF-modulated waveform if based on a baud rate of either 212 kbps or 424 kbps. When the new Manchester trigger and decode option is used along with the recently-introduced NFC automated test software, the designer of NFC-enabled device now has a very powerful set of debug and test tools. To learn more about how to set up the scope to decode NFC-F signals, download the new on this topic.



Frequency Response Analyzer (FRA) Option (DSOXT3FRA, DSOX4FRA, & DSOX6FRA)


Using the InfiniiVision oscilloscope’s built-in function generator (WaveGen), these scopes can now perform automatic frequency response analysis (Bode gain & phase plots) as shown in Figure 4 below.



Figure 1: Triggering on decoding the Manchester-encode PSI5 sensor bus using Keysight’s user-definable serial bus option.


Frequency Response Analysis (FRA) is often a critical measurement used to characterize the frequency response (gain & phase versus frequency) of a variety of today’s electronic designs including passive filters, amplifier circuits, and negative feedback networks of switch mode power supplies (loop response). Engineers typically use network analyzers or standalone low-frequency FRAs to perform these types of measurements today. To learn more about the new FRA option, download the data sheet.



Free InfiniiVision Enhancements with Firmware Upgrade

In addition to the new “pay-for” options listed above, there are also free enhancements available for InfiniiVision X-Series oscilloscopes with an upgrade to the latest firmware (v7.10). The built-in DVM and hardware counter option shown in Figure 5 will no longer be an option. These measurement capabilities will now be standard features of all InfiniiVision oscilloscopes.



Figure 5: The DVM/HW Counter option is now a standard feature in all InfiniiVision X-Series oscilloscopes.


The measurement example shown above shows output ripple riding on top of a 5 V dc output from a switch mode power supply (SMPS) with a switch rate of approximately 2 MHz. The scope’s built-in DVM shows that the actual DC output measures 4.97 V and the actual switching rate is 2.0112 MHz as measured by the 5-digit hardware counter.


Another new free enhancement is on-screen vertical and horizontal grid scaling factors along the left vertical axis and lower horizontal axis, which is also shown in Figure 5. This has been a very popular feature in Keysight’s higher-performance Infiniium oscilloscopes. Labeling each grid with scale factors can help you quickly estimate voltage levels and timing of your signals. 

In addition to making the DVM/Counter option standard, the education training kit (EDK) option is now standard as well on all InfiniiVision 3000T, 4000, and 6000 X-Series oscilloscopes with the latest firmware upgrade. Using the built-in training signals shown in Figure 6 along with available online training guides, users unfamiliar with the operation of Keysight InfiniiVision oscilloscopes can get up-to-speed quickly. To learn more about the EDK training kit and to download the training guides, go to the InfiniiVision webpage.



 Figure 6: The education training kit (EDK) is now standard and includes multiple built-in training signals and online training guides.


Also available at no cost in this latest firmware release are new automatic RF power measurements that can be performed on FFT math functions. Figure 7 shows an example of an Adjacent Power Ratio measurement performed on an RF-modulation sideband measurement. Other new RF measurements include Channel Power, Occupied Bandwidth, and Total Harmonic Distortion (THD).


Figure 7: New FFT analysis measurements.