Are You Designing a Power Amplifier and Have a Nonlinear Device Model?

Blog Post created by KeysightEEsofEDA Employee on Apr 21, 2017

You are designing a power amplifier and have a nonlinear device model. You may want to know what load gives the maximum power-added efficiency (PAE) while the device is delivering a specified output power and while it is operating below some maximum allowable gain compression. How do you do this? Andy Howard, a Senior Application Engineer at Keysight Technologies, has created a simulation example that will help you overcome this design challenge. 

The plots below show results in the Load_Pull_Using_Loads_From_File_Data_Mining data display. Andy has specified the desired output power of 32 dBm. The maximum allowed gain compression is increased from 2 to 3 to 4 to 5 dB. The PAE increases from about 49% to > 67%:

This example has two swept-power load pull simulations. Equations are used to interpolate the data to find the load that gives the maximum PAE while delivering a specified power while below a specified maximum amount of gain compression. One of the load pull simulations reads in loads you have specified graphically on a Smith Chart. The other load pull simulation allows you to specify a circular region on a Smith Chart.

To learn more, download Andy's swept-power load pull simulation example on Keysight EEsof Knowledge Center. (a login required)

Interested in Keysight ADS?  

sipro, pipro, free trial